English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A lipid bound actin meshwork organizes liquid phase separation in model membranes.

MPS-Authors
/persons/resource/persons40292

Honigmann,  A.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15318

Keller,  J.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15210

Hell,  S. W.       
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15024

Eggeling,  C.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2021297.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Honigmann, A., Sadeghi, S., Keller, J., Hell, S. W., Eggeling, C., & Vink, R. (2014). A lipid bound actin meshwork organizes liquid phase separation in model membranes. eLife, 3: e01671. doi:10.7554/eLife.01671.001.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-1209-5
Abstract
The eukaryotic cell membrane is connected to a dense actin rich cortex. We present FCS and STED experiments showing that dense membrane bound actin networks have severe influence on lipid phase separation. A minimal actin cortex was bound to a supported lipid bilayer via biotinylated lipid streptavidin complexes (pinning sites). In general, actin binding to ternary membranes prevented macroscopic liquid-ordered and liquid-disordered domain formation, even at low temperature. Instead, depending on the type of pinning lipid, an actin correlated multi-domain pattern was observed. FCS measurements revealed hindered diffusion of lipids in the presence of an actin network. To explain our experimental findings, a new simulation model is proposed, in which the membrane composition, the membrane curvature, and the actin pinning sites are all coupled. Our results reveal a mechanism how cells may prevent macroscopic demixing of their membrane components, while at the same time regulate the local membrane composition.