English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A lipid bound actin meshwork organizes liquid phase separation in model membranes.

MPS-Authors
/persons/resource/persons40292

Honigmann,  A.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15318

Keller,  J.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15210

Hell,  S. W.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15024

Eggeling,  C.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

Fulltext (public)

2021297.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Honigmann, A., Sadeghi, S., Keller, J., Hell, S. W., Eggeling, C., & Vink, R. (2014). A lipid bound actin meshwork organizes liquid phase separation in model membranes. eLife, 3: e01671. doi:10.7554/eLife.01671.001.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0019-1209-5
Abstract
The eukaryotic cell membrane is connected to a dense actin rich cortex. We present FCS and STED experiments showing that dense membrane bound actin networks have severe influence on lipid phase separation. A minimal actin cortex was bound to a supported lipid bilayer via biotinylated lipid streptavidin complexes (pinning sites). In general, actin binding to ternary membranes prevented macroscopic liquid-ordered and liquid-disordered domain formation, even at low temperature. Instead, depending on the type of pinning lipid, an actin correlated multi-domain pattern was observed. FCS measurements revealed hindered diffusion of lipids in the presence of an actin network. To explain our experimental findings, a new simulation model is proposed, in which the membrane composition, the membrane curvature, and the actin pinning sites are all coupled. Our results reveal a mechanism how cells may prevent macroscopic demixing of their membrane components, while at the same time regulate the local membrane composition.