Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

Geometric Quantifier Elimination Heuristics for Automatically Generating Octagonal and Max-plus Invariants

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kapur, D., Zhang, Z., Horbach, M., Zhao, H., Lu, Q., & Nguyen, T. (2013). Geometric Quantifier Elimination Heuristics for Automatically Generating Octagonal and Max-plus Invariants. In M. P. Bonacina, & M. E. Stickel (Eds.), Automated Reasoning and Mathematics (pp. 189-228). Berlin: Springer. doi:10.1007/978-3-642-36675-8_11.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0019-8385-C
Zusammenfassung
Geometric heuristics for the quantifier elimination approach presented by Kapur (2004) are investigated to automatically derive loop invariants expressing weakly relational numerical properties (such as l ≤ x ≤ h or l ≤ \pm x \pm y ≤q h) for imperative programs. Such properties have been successfully used to analyze commercial software consisting of hundreds of thousands of lines of code (using for example, the Astrée tool based on abstract interpretation framework proposed by Cousot and his group). The main attraction of the proposed approach is its much lower complexity in contrast to the abstract interpretation approach (O(n^2) in contrast to O(n^4), where n is the number of variables) with the ability to still generate invariants of comparable strength. This approach has been generalized to consider disjunctive invariants of the similar form, expressed using maximum function (such as \max(x+a,y+b,z+c,d) ≤ \max(x+e,y+f,z+g,h)), thus enabling automatic generation of a subclass of disjunctive invariants for imperative programs as well.