English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Alpha and theta brain oscillations index dissociable processes in spoken word recognition

MPS-Authors
/persons/resource/persons23131

Strauss,  Antje
Max Planck Research Group Auditory Cognition, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19791

Kotz,  Sonja A.
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
School of Psychological Sciences, The University of Manchester, United Kingdom;

/persons/resource/persons23123

Scharinger,  Mathias
Max Planck Research Group Auditory Cognition, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19902

Obleser,  Jonas
Max Planck Research Group Auditory Cognition, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Strauss, A., Kotz, S. A., Scharinger, M., & Obleser, J. (2014). Alpha and theta brain oscillations index dissociable processes in spoken word recognition. NeuroImage, 97, 387-395. doi:10.1016/j.neuroimage.2014.04.005.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-85D7-6
Abstract
Slow neural oscillations (~ 1–15 Hz) are thought to orchestrate the neural processes of spoken language comprehension. However, functional subdivisions within this broad range of frequencies are disputed, with most studies hypothesizing only about single frequency bands. The present study utilizes an established paradigm of spoken word recognition (lexical decision) to test the hypothesis that within the slow neural oscillatory frequency range, distinct functional signatures and cortical networks can be identified at least for theta- (~ 3–7 Hz) and alpha-frequencies (~ 8–12 Hz). Listeners performed an auditory lexical decision task on a set of items that formed a word–pseudoword continuum: ranging from (1) real words over (2) ambiguous pseudowords (deviating from real words only in one vowel; comparable to natural mispronunciations in speech) to (3) pseudowords (clearly deviating from real words by randomized syllables). By means of time–frequency analysis and spatial filtering, we observed a dissociation into distinct but simultaneous patterns of alpha power suppression and theta power enhancement. Alpha exhibited a parametric suppression as items increasingly matched real words, in line with lowered functional inhibition in a left-dominant lexical processing network for more word-like input. Simultaneously, theta power in a bilateral fronto-temporal network was selectively enhanced for ambiguous pseudowords only. Thus, enhanced alpha power can neurally ‘gate’ lexical integration, while enhanced theta power might index functionally more specific ambiguity-resolution processes. To this end, a joint analysis of both frequency bands provides neural evidence for parallel processes in achieving spoken word recognition.