English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structures of the catalytic EAL domain of the Escherichia coli direct oxygen sensor

MPS-Authors
/persons/resource/persons117897

Tarnawski,  Miroslaw
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons92083

Barends,  Thomas
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons117815

Hartmann,  Elisabeth
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95189

Schlichting,  Ilme
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Tarnawski, M., Barends, T., Hartmann, E., & Schlichting, I. (2013). Structures of the catalytic EAL domain of the Escherichia coli direct oxygen sensor. Acta Crystallographica. Section D: Biological Crystallography (Copenhagen), 69(6), 1045-1053. doi:10.1107/S0907444913004423.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-9014-3
Abstract
The direct oxygen sensor DosP is a multidomain protein that contains a gas-sensing haem domain and an EAL effector domain. EAL domains are omnipresent signal transduction domains in bacteria. Many EAL domains are active phosphodiesterases and are involved in breakdown of the ubiquitous bacterial second messenger cyclic di-GMP. Despite a great deal of information on the functional and structural aspects of active and inactive EAL domains, little is known about the structural basis of their regulation by their associated sensory domains. Here, two crystal structures of the Escherichia coli DosP EAL domain derived from cubic and monoclinic crystal forms that were obtained under tartrate and PEG conditions, respectively, are described. Both of the structures display the typical TIM (triosephosphate isomerase) barrel fold with one antiparallel [beta]-strand. However, unlike other EAL structures, access to the active site in DosP EAL is sterically restricted by the presence of a short helical stretch (Ser637-Ala-Leu-His640) in loop L3 between strand [beta]3 and helix [alpha]3. This element, together with an unordered fragment, replaces the short [alpha]-helix (named [alpha]5 in Tbd1265 EAL) that is found in other EAL-domain structures. Since DosP EAL is an active c-di-GMP phosphodiesterase, the observed inactive conformation is suggested to be of functional relevance for the regulation mechanism of DosP