English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

MinCDE exploits the dynamic nature of FtsZ filaments for its spatial regulation

MPS-Authors
/persons/resource/persons130603

Arumugam,  Senthil
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons96518

Petrasek,  Zdenek
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons15815

Schwille,  Petra
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Arumugam, S., Petrasek, Z., & Schwille, P. (2014). MinCDE exploits the dynamic nature of FtsZ filaments for its spatial regulation. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 111(13), E1192-E1200. doi:10.1073/pnas.1317764111.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0019-8B48-3
Abstract
In Escherichia coli, a contractile ring (Z-ring) is formed at midcell before cytokinesis. This ring consists primarily of FtsZ, a tubulin-like GTPase, that assembles into protofilaments similar to those in microtubules but different in their suprastructures. The Min proteins MinC, MinD, and MinE are determinants of Z-ring positioning in E. coli. MinD and MinE oscillate from pole to pole, and genetic and biochemical evidence concludes that MinC positions the Z-ring by coupling its assembly to the oscillations by direct inhibitory interaction. The mechanism of inhibition of FtsZ polymerization and, thus, positioning by MinC, however, is not understood completely. Our in vitro reconstitution experiments suggest that the Z-ring consists of dynamic protofilament bundles in which monomers constantly are exchanged throughout, stochastically creating protofilament ends along the length of the filament. From the coreconstitution of FtsZ with MinCDE, we propose that MinC acts on the filaments in two ways: by increasing the detachment rate of FtsZ-GDP within the filaments and by reducing the attachment rate of FtsZ monomers to filaments by occupying binding sites on the FtsZ filament lattice. Furthermore, our data show that the MinCDE system indeed is sufficient to cause spatial regulation of FtsZ, required for Z-ring positioning.