Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Displacive lattice excitation through nonlinear phononics viewed by femtosecond X-ray diffraction

MPG-Autoren
/persons/resource/persons133775

Först,  Michael
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133845

Mankowsky,  Roman
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133777

Bromberger,  Hubertus
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133811

Cavalleri,  Andrea
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Department of Physics, University of Oxford;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Först, M., Mankowsky, R., Bromberger, H., Fritz, D. M., Lemke, H., Zhu, D., et al. (2013). Displacive lattice excitation through nonlinear phononics viewed by femtosecond X-ray diffraction. Solid State Communications, 169, 24-27. doi:10.1016/j.ssc.2013.06.024.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0019-8C5F-7
Zusammenfassung
The nonlinear lattice dynamics of La0.7Sr0.3MnO3, as initiated by strong mid-infrared femtosecond pulses made resonant with a specific lattice vibration, are measured with ultrafast X-ray diffraction at the LCLS free electron laser. Our experiments show that large amplitude excitation of an infrared-active stretching mode leads also to a displacive motion along the coordinate of a second, anharmonically coupled, Raman mode. This rectification of the vibrational field is described within the framework of the Ionic Raman Scattering theory and explains how direct lattice excitation in the nonlinear regime can induce a structural phase transition.