User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean under clear skies in spring

There are no MPG-Authors available
External Ressource
No external resources are shared
Fulltext (public)

(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available

Tetzlaff, A., Kaleschke, L., Luepkes, C., Ament, F., & Vihma, T. (2013). The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean under clear skies in spring. The Cryosphere, 7, 153-166. doi:10.5194/tc-7-153-2013.

Cite as: http://hdl.handle.net/11858/00-001M-0000-0019-92F8-4
The influence of spatial surface temperature changes over the Arctic Ocean on the 2-m air temperature variability is estimated using backward trajectories based on ERA-Interim and JRA25 wind fields. They are initiated at Alert, Barrow and at the Tara drifting station. Three different methods are used. The first one compares mean ice surface temperatures along the trajectories to the observed 2-m air temperatures at the stations. The second one correlates the observed temperatures to air temperatures obtained using a simple Lagrangian box model that only includes the effect of sensible heat fluxes. For the third method, mean sensible heat fluxes from the model are correlated with the difference of the air temperatures at the model starting point and the observed temperatures at the stations. The calculations are based on MODIS ice surface temperatures and four different sets of ice concentration derived from SSM/I (Special Sensor Microwave Imager) and AMSR-E (Advanced Microwave Scanning Radiometer for EOS) data. Under nearly cloud-free conditions, up to 90% of the 2-m air temperature variance can be explained for Alert, and 70% for Barrow, using these methods. The differences are attributed to the different ice conditions, which are characterized by high ice concentration around Alert and lower ice concentration near Barrow. These results are robust for the different sets of reanalyses and ice concentration data. Trajectories based on 10-m wind fields from both reanalyses show large spatial differences in the Central Arctic, leading to differences in the correlations between modeled and observed 2-m air temperatures. They are most pronounced at Tara, where explained variances amount to 70% using JRA and 80% using ERA. The results also suggest that near-surface temperatures at a given site are influenced by the variability of surface temperatures in a domain of about 200 km radius around the site.