English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structural complexity of hexagonal prismatic crystal specimens of fluorapatite-gelatine nanocomposites: A case study in biomimetic crystal research

MPS-Authors
/persons/resource/persons126692

Kniep,  Rüdiger
Rüdiger Kniep, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126855

Simon,  Paul
Paul Simon, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126820

Rosseeva,  Elena
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kniep, R., Simon, P., & Rosseeva, E. (2014). Structural complexity of hexagonal prismatic crystal specimens of fluorapatite-gelatine nanocomposites: A case study in biomimetic crystal research. Crystal Research and Technology, 49(1), 4-13. doi:10.1002/crat.201300207.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-B26C-3
Abstract
Hexagonal prismatic crystal-like entities of fluorapatite-gelatine nanocomposites were grown by double-diffusion in gelatine gels. The Bragg pattern of the specimens (containing 2.3(3) wt.-% gelatine) is consistent with fluorapatite. TEM images together with atomistic computer simulations reveal the material to be best described as a mosaic-dominated nanocomposite superstructure. Intrinsic electric dipole fields (detected by electron holography), generated by a non-classical crystallization process of composite nanoboards (elongated platelets), cause the integration of a meso/macroscopic pattern (symmetry: 6/m) of gelatine microfibrils into the superstructure matrix.