English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Improved Electrochemical Performance of Cu3B2O6-Based Conversion Model Electrodes by Composite Formation with Different Carbon Additives

MPS-Authors
/persons/resource/persons126756

Mikhailova,  Daria
Daria Mikhailova, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Parzych, G., Mikhailova, D., Oswald, S., Täschner, C., Ritschel, M., Leonhardt, A., et al. (2014). Improved Electrochemical Performance of Cu3B2O6-Based Conversion Model Electrodes by Composite Formation with Different Carbon Additives. Journal of the Electrochemical Society, 161(9), A1224-A1230. doi:10.1149/2.0221409jes.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0019-C204-C
Abstract
Different kinds of composite electrode materials containing copper boron oxide Cu3B2O6 as an active component are studied in Li-ion test cells. Cu3B2O6-based electrodes are modified by incorporating 10% w/w of either single-wall/double-wall (SW/DW), multi-wall (MW) carbon nanotubes (CNTs) or reduced graphene oxide (RGO). The studies show an increase of cycling performance for all composites in comparison to the standard mixture with 10% w/w amorphous carbon. The best improvement of specific capacity is achieved for the SW/DW CNT Cu3B2O6 composite. After 30 cycles the capacity is still over 152 mAh/g in comparison to 20 mAh/g for the standard mixture. Electrochemical impedance spectroscopy reveals a significant decrease of the resistivity of the Schottky contacts in the CNTs- and RGO- composites compared to the standard mixture. This supports the conclusion that the main mechanism for the capacity improvement is related to better electronic transport properties of the composites.