日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

会議論文

The Curse of Connectivity: t-Total Vertex (Edge) Cover

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Fernau, H., Fomin, F. V., Philip, G., & Saurabh, S. (2010). The Curse of Connectivity: t-Total Vertex (Edge) Cover. In M. T., Thai, & S., Sahni (Eds.), Computing and Combinatorics (pp. 34-43). Berlin: Springer. doi:10.1007/978-3-642-14031-0.


引用: https://hdl.handle.net/11858/00-001M-0000-0019-DC0B-B
要旨
We investigate the effect of certain natural connectivity constraints on the parameterized complexity of two fundamental graph covering problems, namely Vertex Cover and Edge Cover. Specifically, we impose the additional requirement that each connected component of a solution have at least t vertices (resp. edges from the solution), and call the problem t-Total Vertex Cover (resp. t-Total Edge Cover). We show that \beginitemize} \item both problems remain fixed-parameter tractable with these restrictions, with running times of the form \Oh^{*}≤ft(c^{k}\right) for some constant c>0 in each case; \item for every t≥2,t-Total Vertex Cover has no polynomial kernel unless the Polynomial Hierarchy collapses to the third level; \item for every t≥2, t-Total Edge Cover has a linear vertex kernel of size \frac{t+1}{t}k. \end{itemize