English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Microstructural characterization of white charcoal.

MPS-Authors
/persons/resource/persons129267

Linser,  R.
Research Group of Solid-State NMR-2, MPI for Biophysical Chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2039396.pdf
(Publisher version), 665KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Chia, C. H., Joseph, S. D., Rawal, A., Linser, R., Hook, J. M., & Munroe, P. (2014). Microstructural characterization of white charcoal. Journal of Analytical and Applied Pyrolysis, 109, 215-221. doi:10.1016/j.jaap.2014.06.009.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-DC11-C
Abstract
There has been an upsurge of interest in using high density and low volatile matter charcoal to replace coke and coal in the manufacture of aluminium and steel due to its potential to reduce net greenhouse gas emissions from the production process. ‘White’ charcoal is envisaged as a potential candidate for this application. It is synthesized by pyrolysing wood at low temperature (∼240 °C) for 120 hours, and then raising the kiln temperature to ∼1000 °C towards the end of the carbonization process. The charcoal is then withdrawn and smothered with a moistened mixture of earth, sand and ash. However, to date, little is known about the structure of this form of charcoal, which is essential before this material can be widely applied in extractive metallurgy. Characterization of white charcoal with nuclear magnetic resonance and x-ray photoelectron spectroscopy revealed a high fixed carbon content (>95 wt%) with ∼82 at.% of the carbon present in the form of condensed aromatic rings. Scanning electron microscope analysis depicts a porous microstructure with pores ∼100 μm in diameter aligned across the surface and a high density of macropores <10 μm in diameter scattered across the surface. Transmission electron microscope and x-ray diffraction analysis of white charcoal showed a mainly amorphous carbon structure with localized regions of crystalline graphite and calcites. The suitability of white charcoal as a replacement for coke is also discussed.