Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Random Knapsack in Expected Polynomial Tme

MPG-Autoren
/persons/resource/persons44108

Beier,  René
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45673

Vöcking,  Berthold
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Beier, R., & Vöcking, B. (2004). Random Knapsack in Expected Polynomial Tme. Journal of Computer and System Sciences, 69(3), 306-329.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0019-DDBC-6
Zusammenfassung
We present the first average-case analysis proving a polynomial upper bound on the expected running time of an exact algorithm for the 0/1 knapsack problem. In particular, we prove for various input distributions, that the number of Pareto-optimal knapsack fillings is polynomially bounded in the number of availa ble items. An algorithm by Nemhauser and Ullmann can enumerate these solutions very efficiently so that a polynomial upper bound on the number of Pareto-optimal sol utions implies an algorithm with expected polynomial running time. The random input model underlying our analysis is quite general and not restricted to a particular input distribution. We assume adversarial weights and randomly drawn profits (or vice versa). Our analysis covers general probability distributions with finite mean and, in its most general form, can even handle different probability distributions for the profits of different items. This feature enables us to study the effects of correlations between profits and weights. Our analysis confirms and explains practical studies showing that so-called \em strongly correlated\/} instances are harder to solve than {\em weakly correlated\/ ones.