English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Ultrafast Exciton Formation at the ZnO(101¯0) Surface

MPS-Authors
/persons/resource/persons21453

Deinert,  Jan-Christoph
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22225

Wegkamp,  Daniel
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21877

Meyer,  Michael
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons81302

Richter,  Clemens
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22250

Wolf,  Martin
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22128

Stähler,  Julia
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

PhysRevLett.113.057602.pdf
(Publisher version), 599KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Deinert, J.-C., Wegkamp, D., Meyer, M., Richter, C., Wolf, M., & Stähler, J. (2014). Ultrafast Exciton Formation at the ZnO(101¯0) Surface. Physical Review Letters, 116(5): 057602. doi:10.1103/PhysRevLett.113.057602.


Cite as: https://hdl.handle.net/11858/00-001M-0000-001A-0A68-0
Abstract
We study the ultrafast quasiparticle dynamics in and below the ZnO conduction band using femtosecond time-resolved two-photon photoelectron spectroscopy. Above band gap excitation causes hot electron relaxation by electron-phonon scattering down to the Fermi level EF followed by ultrafast (200 fs) formation of a surface exciton (SX). Transient screening of the Coulomb interaction reduces the SX formation probability at high excitation densities near the Mott limit. Located just below the surface, the SX are stable with regard to hydrogen-induced work function modifications and thus the ideal prerequisite for resonant energy transfer applications.