Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Understanding the origin of band gap formation in graphene on metals: graphene on Cu/Ir(111)

MPG-Autoren
/persons/resource/persons22200

Vita,  Hendrik
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21385

Böttcher,  Stefan
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21640

Horn,  Karsten
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

arXiv:1406.1636.pdf
(Preprint), 7MB

srep05704.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vita, H., Böttcher, S., Horn, K., Voloshina, E. N., Ovcharenko, R. E., Kampen, T., et al. (2014). Understanding the origin of band gap formation in graphene on metals: graphene on Cu/Ir(111). Scientific Reports, 4: 5704. doi:10.1038/srep05704.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-001A-0A42-2
Zusammenfassung
Understanding the nature of the interaction at the graphene/metal interfaces is the basis for graphene-based electron- and spin-transport devices. Here we investigate the hybridization between graphene- and metal-derived electronic states by studying the changes induced through intercalation of a pseudomorphic monolayer of Cu in between graphene and Ir(111), using scanning tunnelling microscopy and photoelectron spectroscopy in combination with density functional theory calculations. We observe the modifications in the band structure by the intercalation process and its concomitant changes in the charge distribution at the interface. Through a state-selective analysis of band hybridization, we are able to determine their contributions to the valence band of graphene giving rise to the gap opening. Our methodology reveals the mechanisms that are responsible for the modification of the electronic structure of graphene at the Dirac point, and permits to predict the electronic structure of other graphene-metal interfaces.