English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Discounting for Climate Change

MPS-Authors
/persons/resource/persons37085

Anthoff,  David
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Anthoff, D., Tol, R. S. J., & Yohe, G. W. (2009). Discounting for Climate Change. Economics - The Open Access, Open-Assessment E-Journal, 3: 2009-24. doi:10.5018/economics-ejournal.ja.2009-24.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-F3E0-6
Abstract
It is well-known that the discount rate is crucially important for estimating the social cost of carbon, a standard indicator for the seriousness of climate change and desirable level of climate policy. The Ramsey equation for the discount rate has three components: the pure rate of time preference, a measure of relative risk aversion, and the rate of growth of per capita consumption. Much of the attention on the appropriate discount rate for long-term environmental problems has focussed on the role played by the pure rate of time preference in this formulation. We show that the other two elements are numerically just as important in considerations of anthropogenic climate change. The elasticity of the marginal utility with respect to consumption is particularly important because it assumes three roles: consumption smoothing over time, risk aversion, and inequity aversion. Given the large uncertainties about climate change and widely asymmetric impacts, the assumed rates of risk and inequity aversion can be expected to play significant roles. The consumption growth rate plays multiple roles, as well. It is one of the determinants of the discount rate, and one of the drivers of emissions and hence climate change. We also find that the impacts of climate change grow slower than income, so the effective discount rate is higher than the real discount rate. Moreover, the differential growth rate between rich and poor countries determines the time evolution of the size of the equity weights. As there are a number of crucial but uncertain parameters, it is no surprise that one can obtain almost any estimate of the social cost of carbon. We even show that, for a low pure rate of time preference, the estimate of the social cost of carbon is indeed arbitrary-as one can exclude neither large positive nor large negative impacts in the very long run. However, if we probabilistically constrain the parameters to values that are implied by observed behaviour, we find that the expected social cost of carbon, corrected for uncertainty and inequity, is approximate 60 US dollar per metric tonne of carbon (or roughly $17 per tonne of CO2) under the assumption that catastrophic risk is zero. Data material available at http://www.fnu.zmaw.de/FUND.5679.0.html