English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Jasmonic acid signaling mediates resistance of the wild tobacco Nicotiana attenuata to its native Fusarium, but not Alternaria, fungal pathogens

MPS-Authors
/persons/resource/persons133107

Luu,  Van Thi
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4166

Schuck,  Stefan
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons22326

Kim,  Sang-Gyu
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4245

Weinhold,  Arne
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3786

Baldwin,  Ian Thomas
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Luu, V. T., Schuck, S., Kim, S.-G., Weinhold, A., & Baldwin, I. T. (2015). Jasmonic acid signaling mediates resistance of the wild tobacco Nicotiana attenuata to its native Fusarium, but not Alternaria, fungal pathogens. Plant, Cell and Environment, 38(3), 572-584. doi:10.1111/pce.12416.


Cite as: https://hdl.handle.net/11858/00-001M-0000-001A-02F1-3
Abstract
We recently characterized a highly dynamic fungal disease outbreak in native populations of Nicotiana attenuata in the southwestern United States. Here, we explore how phytohormone signalling contributes to the observed disease dynamics. Single inoculation with three native Fusarium and Alternaria fungal pathogens, isolated from diseased plants growing in native populations, resulted in disease symptoms characteristic for each pathogen species. While Alternaria sp.‐infected plants displayed fewer symptoms and recovered, Fusarium spp.‐infected plants became chlorotic and frequently spontaneously wilted. Jasmonic acid (JA) and salicylic acid (SA) levels were differentially induced after Fusarium or Alternaria infection. Transgenic N. attenuata lines silenced in JA production or JA conjugation to isoleucine (JA‐Ile), but not in JA perception, were highly susceptible to infection by F. brachygibbosum Utah 4, indicating that products derived from the JA‐Ile biosynthetic pathway, but not their perception, is associated with increased Fusarium resistance. Infection assays using ov‐nahG plants which were silenced in pathogen‐induced SA accumulations revealed that SA may increase N. attenuata's resistance to Fusarium infection but not to Alternaria. Taken together, we propose that the dynamics of fungal disease symptoms among plants in native populations may be explained by a complex interplay of phytohormone responses to attack by multiple pathogens.