Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Cellular organization of cortical barrel columns is whisker-specific

MPG-Autoren
/persons/resource/persons84931

Egger,  Robert
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Former Research Group Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84910

Oberlaender,  Marcel
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Former Research Group Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Meyer, H., Egger, R., Guest, J., Foerster, R., Reissl, S., & Oberlaender, M. (2013). Cellular organization of cortical barrel columns is whisker-specific. Proceedings of the National Academy of Sciences of the United States of America, 110(47), 19113-19118. doi:10.1073/pnas.1312691110.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-001A-1286-F
Zusammenfassung
The cellular organization of the cortex is of fundamental importance for elucidating the structural principles that underlie its functions. It has been suggested that reconstructing the structure and synaptic wiring of the elementary functional building block of mammalian cortices, the cortical column, might suffice to reverse engineer and simulate the functions of entire cortices. In the vibrissal area of rodent somatosensory cortex, whisker-related “barrel” columns have been referred to as potential cytoarchitectonic equivalents of functional cortical columns. Here, we investigated the structural stereotypy of cortical barrel columns by measuring the 3D neuronal composition of the entire vibrissal area in rat somatosensory cortex and thalamus. We found that the number of neurons per cortical barrel column and thalamic “barreloid” varied substantially within individual animals, increasing by ∼2.5-fold from dorsal to ventral whiskers. As a result, the ratio between whisker-specific thalamic and cortical neurons was remarkably constant. Thus, we hypothesize that the cellular architecture of sensory cortices reflects the degree of similarity in sensory input and not columnar and/or cortical uniformity principles.