English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dynamic reconfiguration of human brain functional networks through neurofeedback

MPS-Authors
/persons/resource/persons84187

Scheffler,  Klaus
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Haller, S., Kopel, R., Jhooti, P., Haas, T., Scharnowski, F., Lovblad, K.-O., et al. (2013). Dynamic reconfiguration of human brain functional networks through neurofeedback. NeuroImage, 81, 243-252. doi:10.1016/j.neuroimage.2013.05.019.


Cite as: http://hdl.handle.net/11858/00-001M-0000-001A-1292-4
Abstract
Recent fMRI studies demonstrated that functional connectivity is altered following cognitive tasks (e.g., learning) or due to various neurological disorders. We tested whether real-time fMRI-based neurofeedback can be a tool to voluntarily reconfigure brain network interactions. To disentangle learning-related from regulation-related effects, we first trained participants to voluntarily regulate activity in the auditory cortex (training phase) and subsequently asked participants to exert learned voluntary self-regulation in the absence of feedback (transfer phase without learning). Using independent component analysis (ICA), we found network reconfigurations (increases in functional network connectivity) during the neurofeedback training phase between the auditory target region and (1) the auditory pathway; (2) visual regions related to visual feedback processing; (3) insula related to introspection and self-regulation and (4) working memory and high-level visual attention areas related to cognitive effort. Interestingly, the auditory target region was identified as the hub of the reconfigured functional networks without a-priori assumptions. During the transfer phase, we again found specific functional connectivity reconfiguration between auditory and attention network confirming the specific effect of self-regulation on functional connectivity. Functional connectivity to working memory related networks was no longer altered consistent with the absent demand on working memory. We demonstrate that neurofeedback learning is mediated by widespread changes in functional connectivity. In contrast, applying learned self-regulation involves more limited and specific network changes in an auditory setup intended as a model for tinnitus. Hence, neurofeedback training might be used to promote recovery from neurological disorders that are linked to abnormal patterns of brain connectivity.