English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Atypical brain activation patterns during a face-to-face joint attention game in adults with autism spectrum disorder

MPS-Authors
/persons/resource/persons84016

Kleiner,  Mario
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Cognitive Engineering, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Redcay, E., Dodell-Feder, D., Mavros, P., Kleiner, M., Pearrow, M., Triantafyllou, C., et al. (2013). Atypical brain activation patterns during a face-to-face joint attention game in adults with autism spectrum disorder. Human Brain Mapping, 34(10), 2511-2523. doi:10.1002/hbm.22086.


Cite as: https://hdl.handle.net/11858/00-001M-0000-001A-12E6-6
Abstract
Joint attention behaviors include initiating one's own and responding to another's bid for joint attention to an object, person, or topic. Joint attention abilities in autism are pervasively atypical, correlate with development of language and social abilities, and discriminate children with autism from other developmental disorders. Despite the importance of these behaviors, the neural correlates of joint attention in individuals with autism remain unclear. This paucity of data is likely due to the inherent challenge of acquiring data during a real-time social interaction. We used a novel experimental set-up in which participants engaged with an experimenter in an interactive face-to-face joint attention game during fMRI data acquisition. Both initiating and responding to joint attention behaviors were examined as well as a solo attention (SA) control condition. Participants included adults with autism spectrum disorder (ASD) (n = 13), a mean age- and sex-matched neurotypical group (n = 14), and a separate group of neurotypical adults (n = 22). Significant differences were found between groups within social-cognitive brain regions, including dorsal medial prefrontal cortex (dMPFC) and right posterior superior temporal sulcus (pSTS), during the RJA as compared to SA conditions. Region-of-interest analyses revealed a lack of signal differentiation between joint attention and control conditions within left pSTS and dMPFC in individuals with ASD. Within the pSTS, this lack of differentiation was characterized by reduced activation during joint attention and relative hyper-activation during SA. These findings suggest a possible failure of developmental neural specialization within the STS and dMPFC to joint attention in ASD.