English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Comparative in vitro studies of MR imaging probes for metabotropic glutamate subtype-5 receptor targeting

MPS-Authors
/persons/resource/persons83941

Gottschalk,  S
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83903

Engelmann,  J
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gottschalk, S., Engelmann, J., Rolla, G., Botta, M., Parker, D., & Mishra, A. (2013). Comparative in vitro studies of MR imaging probes for metabotropic glutamate subtype-5 receptor targeting. Organic & Biomolecular Chemistry, 11(36), 6131-6141. doi:10.1039/C3OB41297K.


Cite as: https://hdl.handle.net/11858/00-001M-0000-001A-132B-6
Abstract
A series of magnetic resonance imaging probes has been evaluated to target selectively the metabotropic glutamate receptor subtype 5 (mGluR5). Eight imaging probes based on the contrast agent [Gd·DOTA], previously derived by linking it to a series of specific and selective mGluR5 antagonists, have been extensively tested for their functionality in vitro. The Nuclear Magnetic Relaxation Dispersion (NMRD) profiles of selected probes have been examined via field-cycling relaxometry in the presence and absence of a model protein. The properties of the targeted contrast agents were evaluated using a primary astrocyte model, as these cells mimic the in vivo situation effectively. The probes were non-toxic (up to 200 μM) to these mGluR5 expressing primary cells. Cellular proton longitudinal relaxation rate enhancements of up to 35 were observed by MRI at 200 μM of probe concentration. The antagonistic effect of all compounds was tested using an assay measuring changes of intracellular calcium levels. Furthermore, treatment at two different temperatures (4 °C vs. 37 °C) and of an mGluR5-negative cell line provided further insight into the selectivity and specificity of these probes towards cell surface mGluR5. Finally, two out of eight probes demonstrated an antagonistic effect as well as significant enhancement of receptor mediated cellular relaxation rates, strongly suggesting that they would be viable probes for the mapping of mGluR5 by MRI in vivo.