English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Genome-wide screening for DNA variants associated with reading and language traits

MPS-Authors
/persons/resource/persons32812

Gialluisi,  Alessandro
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;
International Max Planck Research School for Language Sciences, MPI for Psycholinguistics, Max Planck Society;

Newbury,  Dianne F.
International Max Planck Research School for Language Sciences, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons4382

Francks,  Clyde
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;
Imaging Genomics, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons4427

Fisher,  Simon E.
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Gialluisi_etal_2014.pdf
(Publisher version), 968KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Gialluisi, A., Newbury, D. F., Wilcutt, E. G., Olson, R. K., DeFries, J. C., Brandler, W. M., et al. (2014). Genome-wide screening for DNA variants associated with reading and language traits. Genes, Brain and Behavior, 13, 686-701. doi:10.1111/gbb.12158.


Cite as: https://hdl.handle.net/11858/00-001M-0000-001A-1D73-3
Abstract
Reading and language abilities are heritable traits that are likely to share some genetic influences with each other. To identify pleiotropic genetic variants affecting these traits, we first performed a Genome-wide Association Scan (GWAS) meta-analysis using three richly characterised datasets comprising individuals with histories of reading or language problems, and their siblings. GWAS was performed in a total of 1862 participants using the first principal component computed from several quantitative measures of reading- and language-related abilities, both before and after adjustment for performance IQ. We identified novel suggestive associations at the SNPs rs59197085 and rs5995177 (uncorrected p≈10−7 for each SNP), located respectively at the CCDC136/FLNC and RBFOX2 genes. Each of these SNPs then showed evidence for effects across multiple reading and language traits in univariate association testing against the individual traits. FLNC encodes a structural protein involved in cytoskeleton remodelling, while RBFOX2 is an important regulator of alternative splicing in neurons. The CCDC136/FLNC locus showed association with a comparable reading/language measure in an independent sample of 6434 participants from the general population, although involving distinct alleles of the associated SNP. Our datasets will form an important part of on-going international efforts to identify genes contributing to reading and language skills.