English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Asymmetry within and around the human planum temporale is sexually dimorphic and influenced by genes involved in steroid hormone receptor activity

MPS-Authors
/persons/resource/persons22322

Guadalupe,  Tulio
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;
International Max Planck Research School for Language Sciences, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons69

Hagoort,  Peter
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

/persons/resource/persons4427

Fisher,  Simon E.
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

/persons/resource/persons4382

Francks,  Clyde
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;
Imaging Genomics, MPI for Psycholinguistics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Guadalupe_etal_2015.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Guadalupe, T., Zwiers, M. P., Wittfeld, K., Teumer, A., Vasquez, A. A., Hoogman, M., et al. (2015). Asymmetry within and around the human planum temporale is sexually dimorphic and influenced by genes involved in steroid hormone receptor activity. Cortex, 62, 41-55. doi:10.1016/j.cortex.2014.07.015.


Cite as: https://hdl.handle.net/11858/00-001M-0000-001A-2D98-1
Abstract
The genetic determinants of cerebral asymmetries are unknown. Sex differences in asymmetry of the planum temporale, that overlaps Wernicke’s classical language area, have been inconsistently reported. Meta-analysis of previous studies has suggested that publication bias established this sex difference in the literature. Using probabilistic definitions of cortical regions we screened over the cerebral cortex for sexual dimorphisms of asymmetry in 2337 healthy subjects, and found the planum temporale to show the strongest sex-linked asymmetry of all regions, which was supported by two further datasets, and also by analysis with the Freesurfer package that performs automated parcellation of cerebral cortical regions. We performed a genome-wide association scan meta-analysis of planum temporale asymmetry in a pooled sample of 3095 subjects, followed by a candidate-driven approach which measured a significant enrichment of association in genes of the ´steroid hormone receptor activity´ and 'steroid metabolic process' pathways. Variants in the genes and pathways identified may affect the role of the planum temporale in language cognition.