Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Using The Virtual Brain to reveal the role of oscillations and plasticity in shaping the brain's dynamical landscape


Ritter,  Petra
Department of Neurology, Charité University Medicine Berlin, Germany;
Bernstein Center for Computational Neuroscience, Berlin, Germany;
Minerva Research Group Brain Modes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Berlin School of Mind and Brain, Humboldt University Berlin, Germany;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Roy, D., Sigala, R., Breakspear, M., McIntosh, A. R., Jirsa, V. K., Deco, G., et al. (2014). Using The Virtual Brain to reveal the role of oscillations and plasticity in shaping the brain's dynamical landscape. Brain Connectivity, 4(10), 791-811. doi:10.1089/brain.2014.0252.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0023-BFA7-7
Spontaneous brain activity, that is, activity in the absence of controlled stimulus input or an explicit active task, is topologically organized in multiple functional networks (FNs) maintaining a high degree of coherence. These “resting state networks” are constrained by the underlying anatomical connectivity between brain areas. They are also influenced by the history of task-related activation. The precise rules that link plastic changes and ongoing dynamics of resting-state functional connectivity (rs-FC) remain unclear. Using the framework of the open source neuroinformatics platform “The Virtual Brain,” we identify potential computational mechanisms that alter the dynamical landscape, leading to reconfigurations of FNs. Using a spiking neuron model, we first demonstrate that network activity in the absence of plasticity is characterized by irregular oscillations between low-amplitude asynchronous states and high-amplitude synchronous states. We then demonstrate the capability of spike-timing-dependent plasticity (STDP) combined with intrinsic alpha (8–12 Hz) oscillations to efficiently influence learning. Further, we show how alpha-state-dependent STDP alters the local area dynamics from an irregular to a highly periodic alpha-like state. This is an important finding, as the cortical input from the thalamus is at the rate of alpha. We demonstrate how resulting rhythmic cortical output in this frequency range acts as a neuronal tuner and, hence, leads to synchronization or de-synchronization between brain areas. Finally, we demonstrate that locally restricted structural connectivity changes influence local as well as global dynamics and lead to altered rs-FC.