English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Fabrication of Nitrogen-Modified Annealed Nanodiamond with Improved Catalytic Activity

MPS-Authors
/persons/resource/persons22148

Su,  Dang Sheng
Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Science;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lin, Y., & Su, D. S. (2014). Fabrication of Nitrogen-Modified Annealed Nanodiamond with Improved Catalytic Activity. ACS Nano, 8(8), 7823-7833. doi:10.1021/nn501286v.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0023-CE60-5
Abstract
Annealed ultradispersed nanodiamond (ADD) with sp2 curved concentric graphitic shells is an interesting hybrid material consisting of the remarkable surface properties of graphene-based nanomaterials and the intrinsic properties of a diamond core. In this case, based on its specific properties and surface oxygen functional groups, nitrogen-modified ADD powders have been tunably synthesized via three different preparation methods in a calcination treatment process. The detailed formation and dynamic behaviors of the nitrogen species on the modified ADD during the preparation process are revealed by elemental analysis, X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption. Moreover, we study the catalytic performance on the metal-free nitrogen-modified ADD catalysts by means of selective oxidation of benzylic alcohols as a probe reaction. The results indicate that the modified ADD catalysts exhibit a higher catalytic activity than pristine ADD. By correlating XPS data with catalytic measurements, we conclude that the pyridinic nitrogen species plays a pivotal role in the catalytic reaction. Our work provides valuable information on the design of modified carbon materials with more excellent properties.