Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Intermolecular nuclear relaxation in paramagnetic solutions: from free radicals to rare earths

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Belorizky, E., Fries, P., & Rast, S. (2001). Intermolecular nuclear relaxation in paramagnetic solutions: from free radicals to rare earths. Comptes Rendus de l'Academie des Sciences. Serie II Fasc. C - Chimie, 4, 825-832. doi:10.1016/S1387-1609(01)01332-9.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0023-DA43-A
Zusammenfassung
The principles of the intermolecular relaxation of a nuclear spin by its fluctuating magnetic dipolar interactions with the electronic spins of the paramagnetic surrounding species in solution are briefly recalled. It is shown that a very high dynamic nuclear polarization (DNP) of solvent protons is obtained by saturating allowed transitions of free radicals with a hyperfine structure, and that this effect can be used in efficient Earth field magnetometers. Recent work on trivalent lanthanide Ln(3+) aqua complexes in heavy water solutions is discussed, including paramagnetic shift and relaxation rate measurements of the H-1 NMR lines of probe solutes. This allows a determination of the effective electronic magnetic moments of the various Ln(3+) ions in these complexes, and an estimation of their longitudinal and transverse electronic relaxation times T-1e and T-2e. Particular attention is given to Gd(III) hydrated chelates which can serve as contrast agents in magnetic resonance imaging (MRI). The full experimental electronic paramagnetic resonance (EPR) spectra of these complexes can be interpreted within the Redfield relaxation theory. Monte-Carlo simulations are used to explore situations beyond the validity of the Redfield approximation. For each Gd(III) complex, the EPR study leads to an accurate prediction of T-1e, which can be also derived from an independent relaxation dispersion study of the protons of the probe solutes. (C) 2001 Academie des sciences / Editions scientifiques et medicales Elsevier SAS.