English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Ultradeep Human Phosphoproteome Reveals a Distinct Regulatory Nature of Tyr and Ser/Thr-Based Signaling

MPS-Authors
/persons/resource/persons78699

Sharma,  Kirti
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons77909

D'Souza,  Rochelle C. J.
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons82508

Tyanova,  Stefka
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78611

Schaab,  Christoph
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78895

Wisniewski,  Jacek R.
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons77870

Cox,  Jürgen
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78356

Mann,  Matthias
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Sharma, K., D'Souza, R. C. J., Tyanova, S., Schaab, C., Wisniewski, J. R., Cox, J., et al. (2014). Ultradeep Human Phosphoproteome Reveals a Distinct Regulatory Nature of Tyr and Ser/Thr-Based Signaling. CELL REPORTS, 8(5), 1583-1594. doi:10.1016/j.celrep.2014.07.036.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0023-F20C-6
Abstract
Regulatory protein phosphorylation controls normal and pathophysiological signaling in eukaryotic cells. Despite great advances in mass-spectrometry-based proteomics, the extent, localization, and site-specific stoichiometry of this posttranslational modification (PTM) are unknown. Here, we develop a stringent experimental and computational work-flow, capable of mapping more than 50,000 distinct phosphorylated peptides in a single human cancer cell line. We detected more than three-quarters of cellular proteins as phosphoproteins and determined very high stoichiometries in mitosis or growth factor signaling by label-free quantitation. The proportion of phospho-Tyr drastically decreases as coverage of the phosphoproteome increases, whereas Ser/Thr sites saturate only for technical reasons. Tyrosine phosphorylation is maintained at especially low stoichiometric levels in the absence of specific signaling events. Unexpectedly, it is enriched on higher-abundance proteins, and this correlates with the substrate KM values of tyrosine kinases. Our data suggest that P-Tyr should be considered a functionally separate PTM of eukaryotic proteomes.