English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Natural and anthropogenic methane fluxes in Eurasia: a mesoscale quantification by generalized atmospheric inversion

MPS-Authors
/persons/resource/persons62457

Lavrič,  J. V.
Tall Tower Atmospheric Gas Measurements, Dr. J. Lavrič, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BGC2131D.pdf
(Publisher version), 7MB

BGC2131.pdf
(Publisher version), 7MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Berchet, A., Pison, I., Chevallier, F., Paris, J.-D., Bousquet, P., Bonne, J.-L., et al. (2015). Natural and anthropogenic methane fluxes in Eurasia: a mesoscale quantification by generalized atmospheric inversion. Biogeosciences, 12(18), 5393-5414. doi:10.5194/bg-12-5393-2015.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0023-EEFF-0
Abstract
Eight surface observation sites providing quasi-continuous measurements of atmospheric methane mixing ratios have been operated since the mid-2000's in Siberia. For the first time in a single work, we assimilate all of these in situ data in an atmospheric inversion. Our objective is to quantify methane surface fluxes from anthropogenic and wetland sources at the meso-scale in the Siberian Lowlands for the year 2010. To do so, we first inquire into the way the inversion uses the observations and the fluxes are constrained by the observation sites. As atmospheric inversions at the meso-scale suffer from mis-quantified sources of uncertainties, we follow recent innovations in inversion techniques and use a new inversion approach which quantifies the uncertainties more objectively than the previous inversions. We find that, due to errors in the representation of the atmospheric transport and redundant pieces of information, only one observation every few days is found valuable by the inversion. The remaining high-resolution signals are representative of very local emission patterns. An analysis of the use of information by the inversion also reveals that the observation sites constrain methane emissions within a radius of 500 km. More observation sites are necessary to constrain the whole Siberian Lowlands. Still, the fluxes within the constrained areas are quantified with objectified uncertainties. At the end, the tolerance intervals for posterior methane fluxes are of roughly 20% (resp. 50%) of the fluxes for anthropogenic (resp. wetland) sources. About 50–70% of emissions are constrained by the inversion on average on an annual basis. Extrapolating the figures on the constrained areas to the whole Siberian Lowlands, we find a regional methane budget of 5–28 Tg CH4 for the year 2010, i.e. 1–5% of the global methane emissions. As very few in situ observations are available in the region of interest, observations of methane total columns from the Greenhouse Gas Observing SATellite (GOSAT) are used for the evaluation of the inversion results, but they exhibit marginal signal from the fluxes within the region of interest.