English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Effective-one-body model for black-hole binaries with generic mass ratios and spins

MPS-Authors
/persons/resource/persons192127

Taracchini,  Andrea
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons127862

Buonanno,  A.
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;
Maryland Center for Fundamental Physics & Joint Space-Science Institute, Department of Physics, University of Maryland;

/persons/resource/persons192101

Hinderer,  Tanja
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1311.2544.pdf
(Preprint), 598KB

PhysRevD.89.061502.pdf
(Any fulltext), 766KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Taracchini, A., Buonanno, A., Pan, Y., Hinderer, T., Boyle, M., Hemberger, D. A., et al. (2014). Effective-one-body model for black-hole binaries with generic mass ratios and spins. Physical Review D, 89(6): 061502. doi:10.1103/PhysRevD.89.061502.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0023-F6AC-D
Abstract
Gravitational waves emitted by black-hole binary systems have the highest signal-to-noise ratio in LIGO and Virgo detectors when black-hole spins are aligned with the orbital angular momentum and extremal. For such systems, we extend the effective-one-body inspiral-merger-ringdown waveforms to generic mass ratios and spins calibrating them to 38 numerical-relativity nonprecessing waveforms produced by the SXS Collaboration. The numerical-relativity simulations span mass ratios from 1 to 8, spin magnitudes up to 98% of extremality, and last for 40 to 60 gravitational-wave cycles. When the total mass of the binary is between 20Msun and 200Msun, the effective-one-body nonprecessing (dominant mode) waveforms have overlaps above 99% (using the advanced-LIGO design noise spectral density) with all of the 38 nonprecessing numerical waveforms, when maximizing only on initial phase and time. This implies a negligible loss in event rate due to modeling. Moreover, without further calibration, we show that the precessing effective-one-body (dominant mode) waveforms have overlaps above 97% with two very long, strongly precessing numerical-relativity waveforms, when maximizing only on the initial phase and time.