Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Next-to-leading tail-induced spin-orbit effects in the gravitational radiation flux of compact binaries

MPG-Autoren
/persons/resource/persons192103

Marsat,  Sylvain
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons192097

Bohé,  Alejandro
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons127862

Buonanno,  A.
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;
Maryland Center for Fundamental Physics and Joint Space-Science Institute, Department of Physics, University of Maryland;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1307.6793.pdf
(Preprint), 2MB

0264-9381_31_2_025023.pdf
(beliebiger Volltext), 453KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Marsat, S., Bohé, A., Blanchet, L., & Buonanno, A. (2014). Next-to-leading tail-induced spin-orbit effects in the gravitational radiation flux of compact binaries. Classical and quantum gravity, 31(2): 025023. doi:10.1088/0264-9381/31/2/025023.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0023-F6D0-A
Zusammenfassung
The imprint of non-linearities in the propagation of gravitational waves --- the tail effect --- is responsible for new spin contributions to the energy flux and orbital phasing of spinning black hole binaries. The spin-orbit (linear in spin) contribution to this effect is currently known at leading post-Newtonian order, namely 3PN for maximally spinning black holes on quasi-circular orbits. In the present work, we generalize these tail-originated spin-orbit terms to the next-to-leading 4PN order. This requires in particular extending previous results on the dynamical evolution of precessing compact binaries. We show that the tails represent the only spin-orbit terms at that order for quasi-circular orbits, and we find perfect agreement with the known result for a test particle around a Kerr black hole, computed by perturbation theory. The BH-horizon absorption terms have to be added to the PN result computed here. Our work completes the knowledge of the spin-orbit effects to the phasing of compact binaries up to the 4PN order, and will allow the building of more faithful PN templates for the inspiral phase of black hole binaries, improving the capabilities of ground-based and space-based gravitational wave detectors.