English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Large-scale automated histology in the pursuit of connectomes

MPS-Authors
/persons/resource/persons128986

Denk,  Winfried
Department of Biomedical Optics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons39222

Helmstaedter,  Moritz
Department of Biomedical Optics, Max Planck Institute for Medical Research, Max Planck Society;
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons84910

Oberlaender,  Marcel
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95089

Sakmann,  Bert
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kleinfeld, D., Bharioke, A., Blinder, P., Bock, D. D., Briggman, K. L., Chklovskii, D. B., et al. (2011). Large-scale automated histology in the pursuit of connectomes. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 31(45), 16125-16138. doi:10.1523/JNEUROSCI.4077-11.2011.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-1326-D
Abstract
How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity