Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Vibrational mode analysis of isotope-labeled electronically excited riboflavin

MPG-Autoren
/persons/resource/persons128263

Zimmermann,  Herbert
Department of Molecular Physics, Max Planck Institute for Medical Research, Max Planck Society;
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons92695

Domratcheva,  Tatiana
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

Externe Ressourcen
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wolf, M. M. N., Zimmermann, H., Diller, R., & Domratcheva, T. (2011). Vibrational mode analysis of isotope-labeled electronically excited riboflavin. The Journal of Physical Chemistry B, 115(23), 7621-7628. doi:10.1021/jp110784t.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-1FEE-4
Zusammenfassung
ABSTRACT: Isotope−labeled riboflavin in DMSO was employed in conjunction with femtosecond time−resolved infrared vibrational spectroscopy and quantum chemical calculations to analyze and assign the electronically excited state vibrational modes of the isoalloxazine unit as a prototype for the cofactors in flavin binding blue−light receptors. Using the riboflavin 13Canalogues RF−2−13C and RF−4,10a−13C, the carbonyl vibrations, in particular, were studied. Various quantum chemical models were applied that take into account a polarizable environment or the impact of hydrogen bonds. The CIS quantum−chemistry method was successfully applied to describe the lowest singlet excited electronic state in riboflavin. The experimentally observed frequencies and isotope−shifts as well as their variability in the diverse model calculations are discussed. On these grounds, a consistent assignment of the electronic ground and excited state vibrations is presented