English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Conformational constraints on the headgroup and sn-2 chain of bilayer DMPC from NMR dipolar couplings

MPS-Authors
/persons/resource/persons128263

Zimmermann,  Herbert
Department of Molecular Physics, Max Planck Institute for Medical Research, Max Planck Society;
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hong, M., Schmidt-Rohr, K., & Zimmermann, H. (1996). Conformational constraints on the headgroup and sn-2 chain of bilayer DMPC from NMR dipolar couplings. Biochemistry, 35(25), 8335-8341. doi:10.1021/bi953083i.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-33E9-2
Abstract
This paper presents new NMR constraints on the conformation of the headgroup, glycerol backbone, and sn-2 chain of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) in the liquid-crystalline bilayer. Using two-dimensional 13C-1H chemical shift correlation spectroscopy, we find significant dipolar couplings between the carboxyl carbon CO2 and the headgroup protons. This indicates that a conformation in which the DMPC headgroup and the beginning of the sn-2 chain bend toward each other is significantly populated in the fluid bilayer. The predominance of this headgroup orientation can be further confirmed by 31P-13C dipolar couplings from the literature, which constrain the glycerol G2-G3 torsion angle to be close to trans, excluding a significant presence of one of the two conformations found in the DMPC crystal. Combining and reexamining 20 known NMR couplings for the glycerol backbone and its adjacent segments of L-DMPC, we find that several torsion angles and bond orientations in the core of the DMPC molecule are constrained severely and must differ from those in the crystal structure. We propose a consistent molecular model for phosphocholine lipids in the liquid-crystalline phase, with a rigid backbone in the core of the molecule, a bent-back headgroup, and increasing mobility toward the ends of the acyl chains and the headgroup