English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Logic as Marr's computational level: Four case studies

MPS-Authors
/persons/resource/persons69

Hagoort,  Peter
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Baggio_et_al-2015_TICS.pdf
(Publisher version), 147KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Baggio, G., van Lambalgen, M., & Hagoort, P. (2015). Logic as Marr's computational level: Four case studies. Topics in Cognitive Science, 7, 287-298. doi:10.1111/tops.12125.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-403D-E
Abstract
We sketch four applications of Marr's levels-of-analysis methodology to the relations between logic and experimental data in the cognitive neuroscience of language and reasoning. The first part of the paper illustrates the explanatory power of computational level theories based on logic. We show that a Bayesian treatment of the suppression task in reasoning with conditionals is ruled out by EEG data, supporting instead an analysis based on defeasible logic. Further, we describe how results from an EEG study on temporal prepositions can be reanalyzed using formal semantics, addressing a potential confound. The second part of the article demonstrates the predictive power of logical theories drawing on EEG data on processing progressive constructions and on behavioral data on conditional reasoning in people with autism. Logical theories can constrain processing hypotheses all the way down to neurophysiology, and conversely neuroscience data can guide the selection of alternative computational level models of cognition.