Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Reduced intracellular mobility underlies manganese relaxivity in mouse brain in vivo: MRI at 2.35 and 9.4 T.

MPG-Autoren
/persons/resource/persons15994

Watanabe,  T.
Biomedical NMR Research GmbH, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15082

Frahm,  J.
Biomedical NMR Research GmbH, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15525

Michaelis,  T.
Biomedical NMR Research GmbH, MPI for biophysical chemistry, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Watanabe, T., Frahm, J., & Michaelis, T. (2015). Reduced intracellular mobility underlies manganese relaxivity in mouse brain in vivo: MRI at 2.35 and 9.4 T. Brain Structure and Function, 220(3), 1529-1538. doi:10.1007/s00429-014-0742-8.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0024-4654-C
Zusammenfassung
Using T1-weighted MRI at two different magnetic field strengths, the enhanced longitudinal relaxivity due to paramagnetic manganese ions in mouse brain in vivo is shown to reflect reduced intracellular mobility. One day after systemic administration of manganese chloride, increases of the longitudinal relaxation rate DR1 in several brain regions are significantly higher at 2.35 T than at 9.4 T. The corresponding relaxivity ratios 100r1/400r1 = 100DR1/400DR1 range from 2.4 (striatum) to 4.4 (cerebellar cortex). In contrast, the DR1 values after intraventricular administration of gadolinium-DTPA (Gd- DTPA) are not significantly different between both field strengths yielding 100r1/400r1 ratios from 1.0 to 1.1. The same observation holds true for manganese and Gd-DTPA relaxivities in aqueous solution. The pronounced field strength dependence of manganese relaxivities indicates a reduced mobility of manganese ions in vivo by confinement to a viscous fluid compartment and/or due to macromolecular binding. Moreover, preferential enhancement of nerve cell assemblies by manganese ions and the observation of additional contrast enhancement by magnetization transfer suggest an intracellular localization of manganese. This is further supported by a slow release of manganese from nerve cells postmortem, which occurs despite a high permeability of damaged cellular membranes as demonstrated by a rapid uptake of extracellular Gd-DTPA.