日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Anthropogenic influence on recent circulation-driven Antarctic sea-ice changes

MPS-Authors

Haumann,  F. Alexander
Max Planck Research Group The Sea Ice in the Earth System, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37281

Notz,  Dirk
Max Planck Research Group The Sea Ice in the Earth System, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37320

Schmidt,  Hauke       
Middle and Upper Atmosphere, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
付随資料 (公開)
There is no public supplementary material available
引用

Haumann, F. A., Notz, D., & Schmidt, H. (2014). Anthropogenic influence on recent circulation-driven Antarctic sea-ice changes. Geophysical Research Letters, 41, 8429-8437. doi:10.1002/2014GL061659.


引用: https://hdl.handle.net/11858/00-001M-0000-0024-478D-4
要旨
Observations reveal an increase of Antarctic sea ice over the past three decades, yet global climate models tend to simulate a sea-ice decrease for that period. Here, we combine observations with model experiments (MPI-ESM) to investigate causes for this discrepancy and for the observed sea-ice increase. Based on observations and atmospheric reanalysis, we show that on multi-decadal time scales Antarctic sea-ice changes are linked to intensified meridional winds that are caused by a zonally asymmetric lowering of the high-latitude surface pressure. In our simulations, this surface-pressure lowering is a response to a combination of anthropogenic stratospheric ozone depletion and greenhouse gas increase. Combining these two lines of argument, we infer a possible anthropogenic influence on the observed sea-ice changes. However, similar to other models, MPI-ESM simulates a surface-pressure response that is rather zonally symmetric, which explains why the simulated sea-ice response differs from observations.