Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

15N,1H Heteronuclear Correlation NMR of Gramicidin A in DMPC-d 67

MPG-Autoren
/persons/resource/persons58537

Farès,  C.
Departments of Physics, and Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada ;
Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Farès, C., Sharom, F., & Davis, J. (2002). 15N,1H Heteronuclear Correlation NMR of Gramicidin A in DMPC-d 67 . Journal of the American Chemical Society, 124(38), 11232-11233. doi:10.1021/ja0264549.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-4B87-E
Zusammenfassung
We have studied gramicidin A, an environmentally sensitive polymorphic pentadecapeptide, fully 15N-labelled and dispersed in a highly deuterated phospholipid bilayer system. By submitting the sample to fast magic angle spinning, we were able to reduce the polypeptide amide hydrogen linewidths to 160 Hz, and hence to partially resolve them. By correlating these resonances with the 40 Hz wide dipolar coupled 15N in a 2D-CROPSY (cross-polarization spectroscopy) experiment, it was possible to observe the 20 partially overlapping 1H−15N signal pairs from the polypeptide backbone and sidechains. Both chemical shift distributions closely match those of the same peptide in SDS micelles, but only poorly match those of conformationally different gramicidin A in trifluoroethanol, dimethylsulfoxide, or methanol/chloroform mixture. Our results are indicative of the N-to-N right-handed β6.3-helix conformation of gramicidin A and offer sufficient resolution to encourage development of experiments to measure orientational or distance restraints using through-space dipolar couplings.