English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

FM1-43 dye ultrastructural localization in and release from frog motor nerve terminals

MPS-Authors
/persons/resource/persons93381

Henkel,  Andreas Wolfram
Department of Biomedical Optics, Max Planck Institute for Medical Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Henkel, A. W., Lübke, J. H. R., & Betz, W. J. (1995). FM1-43 dye ultrastructural localization in and release from frog motor nerve terminals. Proceedings of the National Academy of Sciences of the United States of America, 93(5), 1918-1923. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8700859.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-51D5-2
Abstract
Previous work has shown that the fluorescent styryl dye FM1-43 stains nerve terminals in an activity-dependent fashion. This dye appears to label the membranes of recycled synaptic vesicles by being trapped during endocytosis. Stained terminals can subsequently be destained by repeating nerve stimulation in the absence of dye; the destaining evidently reflects escape of dye into the bathing medium from membranes of exocytosing synaptic vesicles. In the present study we tested two key aspects of this interpretation of FM1-43 behavior, namely: (i) that the dye is localized in synaptic vesicles, and (ü) that it is actually released into the bathing medium during destaining. To accomplish this, we first photolyzed the internalized dye in the presence of diaminobenzidine. This created an electron-dense reaction product that could be visualized in the electron microscope. Reaction product was confined to synaptic vesicles, as predicted. Second, using spectrofluorometry, we quantified the release of dye liberated into the medium from tubocurarine-treated nerve-muscle preparations. Nerve stimulation increased the amount of FM1-43 released, and we estimate that normally a stained synaptic vesicle contains a few hundred molecules of the dye. The key to the successful detection of released FM1-43 was to add the micelle-forming detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), which increased FM1-43 quantum yield by more than two orders of magnitude