English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Population genomics of natural and experimental populations of guppies (Poecilia reticulata)

MPS-Authors
/persons/resource/persons136841

Künstner,  Axel
Guest Group Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Fraser_et_al_2014.pdf
(Publisher version), 358KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Fraser, B. A., Künstner, A., Reznick, D. N., Dreyer, C., & Weigel, D. (2015). Population genomics of natural and experimental populations of guppies (Poecilia reticulata). Molecular Ecology, 24(2), 389-408. doi:10.1111/mec.13022.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-5248-5
Abstract
Convergent evolution represents one of the best lines of evidence for adaptation, but few cases of phenotypic convergence are understood at the genetic level. Guppies inhabiting the Northern Mountain Range of Trinidad provide a classic example of phenotypic convergent evolution, where adaptation to low or high predation environments has been found for a variety of traits. A major advantage of this system is the possibility of long-term experimental studies in nature, including transplantation from high to low predation sites. We used genome scans of guppies from three natural high and low predation populations and from two experimentally established populations and their sources to examine whether phenotypic convergent evolution leaves footprints at the genome level. We used population genetic modeling approaches to reconstruct the demographic history and migration among sampled populations. Naturally colonized low predation populations had signatures of increased effective population size since colonization, while introduction populations had signatures of decreased effective population size. Only a small number of regions across the genome had signatures of selection in all natural populations. However, the two experimental populations shared many genomic regions under apparent selection, more than expected by chance. This overlap coupled with a population decrease since introduction provides evidence for convergent selection occurring in the two introduction populations. The lack of genetic convergence in the natural populations suggests that convergent evolution is lacking in these populations or that the effects of selection become difficult to detect after a long time period.