English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

HSF1 deficiency and impaired HSP90-dependent protein folding are hallmarks of aneuploid human cells

MPS-Authors
/persons/resource/persons128410

Donnelly,  Neysan
Storchova, Zuzana / Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons130033

Passerini,  Verena
Storchova, Zuzana / Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons80772

Dürrbaum,  Milena
Storchova, Zuzana / Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78756

Stingele,  Silvia
Storchova, Zuzana / Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78761

Storchova,  Zuzana
Storchova, Zuzana / Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Donnelly, N., Passerini, V., Dürrbaum, M., Stingele, S., & Storchova, Z. (2014). HSF1 deficiency and impaired HSP90-dependent protein folding are hallmarks of aneuploid human cells. EMBO JOURNAL, 33(20), 2374-2387. doi:10.15252/embj.201488648.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-59DB-1
Abstract
Aneuploidy is a hallmark of cancer and is associated with malignancy and poor prognosis. Recent studies have revealed that aneuploidy inhibits proliferation, causes distinct alterations in the transcriptome and proteome and disturbs cellular proteostasis. However, the molecular mechanisms underlying the changes in gene expression and the impairment of proteostasis are not understood. Here, we report that human aneuploid cells are impaired in HSP90-mediated protein folding. We show that aneuploidy impairs induction of the heat shock response suggesting that the activity of the transcription factor heat shock factor 1 (HSF1) is compromised. Indeed, increased levels of HSF1 counteract the effects of aneuploidy on HSP90 expression and protein folding, identifying HSF1 overexpression as the first aneuploidy-tolerating mutation in human cells. Thus, impaired HSF1 activity emerges as a critical factor underlying the phenotypes linked to aneuploidy. Finally, we demonstrate that deficient protein folding capacity directly shapes gene expression in aneuploid cells. Our study provides mechanistic insight into the causes of the disturbed proteostasis in aneuploids and deepens our understanding of the role of HSF1 in cytoprotection and carcinogenesis.