Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Benzylidene-indolinones are effective as multi-targeted kinase inhibitor therapeutics against hepatocellular carcinoma


Ullrich,  Axel
Ullrich, Axel / Molecular Biology, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Ho, H. K., Chua, B. T., Wong, W., Lim, K. S., Teo, V., Ong, H.-T., et al. (2014). Benzylidene-indolinones are effective as multi-targeted kinase inhibitor therapeutics against hepatocellular carcinoma. MOLECULAR ONCOLOGY, 8(7), 1266-1277. doi:10.1016/j.molonc.2014.04.008.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-5ABA-3
Effective pharmacological intervention of advanced hepatocellular carcinoma (HCC) is currently lacking. Despite the use of tyrosine kinase inhibitors (TKIs) for the targeted therapy of several malignancies, no agent has been developed to specifically interfere with the oncogenic tyrosine kinase signaling aberrations found in HCC. Therefore, we adopted an orthogonal biological phenotypic screening approach to uncover candidate compounds: based on a potent cytotoxicity toward HCC-derived cell lines, and minimal toxicity toward normal liver cells. Given the success of indolinone as a chemical scaffold in deriving potent multi-kinase inhibitors (e.g. sunitinib), we screened a group of newly synthesized benzylidene-indolinones. Among the candidates, E/Z 6-Chloro-3-(3-trifluoromethyl-benzyliden)-1,3-dihydroindo1-2-one (compound 47) exhibited potent antiproliferative, anti-migratory, pro-apoptotic properties and good safety profile as compared to known multi-targeted tyrosine kinase inhibitors sunitinib and sorafenib. Additionally, an accompanying suppression of alpha-fetoprotein (AFP) transcription, an HCC tumor marker, implies a favorable selectivity and efficacy on HCC. The in vivo efficacy was demonstrated in an HCC xenograft where 47 was administered once weekly (60 mg/kg) and suppressed tumor burden to the same extent as sorafenib (30 mg/kg daily). A receptor tyrosine kinase (RTK) array study revealed promising inhibition of multiple tyrosine kinases such as IGF-1R, Tyro3 and EphA2 phosphorylation. Gene silencing of these targets ameliorated the cytotoxic potential of 47 on the HuH7 cell line, thereby implicating their contribution to the tumorigenicity of HCC. Hence, 47 exhibits potent anti-cancer effects on HCC cell lines, and is a suitable lead for developing multi-targeted kinase inhibitors of relevance to HCC. (C) 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.