Help Privacy Policy Disclaimer
  Advanced SearchBrowse





X-Ray Quantum Optics With Mössbauer Nuclei In Thin-Film Cavities


Heeg,  Kilian Peter
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available

Heeg, K. P. (2014). X-Ray Quantum Optics With Mössbauer Nuclei In Thin-Film Cavities. PhD Thesis, Ruprecht-Karls-Universität, Heidelberg.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-55BD-7
In this thesis thinfilm cavities with embedded Mössbauer nuclei probed by near-resonant x-ray light are studied from a quantum optical perspective. A theoretical framework is developed and compact expressions for the observables are derived for the linear excitation regime, which is encountered in current experiments. Even advanced cavity layouts can be modeled in excellent agreement with the results of previous experiments and semi-classical approaches. In the absence of magnetic hyperfine splitting, the spectral response of the system is found to be formed by tunable Fano profiles. An experimental implementation of this line shape control allows to extract spectroscopic signatures with high precision and to reconstruct the phase of the nuclear transition in good agreement with the theoretical predictions. The alignment of medium magnetization and polarization control of the x-rays enable to engineer advanced quantum optical level schemes, in which vacuum induced coherence effects are predicted and successfully demonstrated in an experiment. Furthermore, it is shown that group velocity control for x-ray pulses can be achieved in the cavity. A scheme for its observation is proposed and then employed to experimentally confirm sub-luminal x-ray propagation. Finally, non-linear effects, which could become accessible with future light sources, are explored and a non-linear line shape control mechanism is discussed.