English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon

MPS-Authors
/persons/resource/persons125046

Beese-Vasbender,  Pascal Fabien
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons135921

Grote,  Jan-Philipp
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125406

Stratmann,  Martin
Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125274

Mayrhofer,  Karl Johann Jakob
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Beese-Vasbender, P. F., Grote, J.-P., Garrelfs, J., Stratmann, M., & Mayrhofer, K. J. J. (2015). Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon. Bioelectrochemistry, 102, 50-55. doi:10.1016/j.bioelechem.2014.11.004.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-5BA2-F
Abstract
Highlights • A lithoautotrophic archaeon selectively produces methane at − 0.4 V vs. SHE. • Methane production by strain IM1 proceeds with a coulomb efficiency of 80%. • CO2 reduction by strain IM1 features a low overpotential of only − 0.16 V vs. SHE. • Below − 0.4 V vs. SHE selectivity changes and H2 is evolved in a second pathway. • Strain IM 1 shows great promise for bioelectrical conversion of renewable energy.