English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Voltage Dependence of Proton Pumping by Bacteriorhodopsin Mutants with Altered Lifetime of the M Intermediate

MPS-Authors
/persons/resource/persons137667

Geibel,  Sven
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137780

Lörinczi,  Eva
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137592

Bamberg,  Ernst
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137658

Friedrich,  Thomas
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;
Technical University of Berlin, Institute of Chemistry, Berlin, Germany ;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Geibel, S., Lörinczi, E., Bamberg, E., & Friedrich, T. (2013). Voltage Dependence of Proton Pumping by Bacteriorhodopsin Mutants with Altered Lifetime of the M Intermediate. PLoS One, 8(9), e73338-e73338. doi:10.1371/journal.pone.0073338.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-D4AC-0
Abstract
The light-driven proton pump bacteriorhodopsin (BR) from Halobacterium salinarum is tightly regulated by the [H+] gradient and transmembrane potential. BR exhibits optoelectric properties, since spectral changes during the photocycle are kinetically controlled by voltage, which predestines BR for optical storage or processing devices. BR mutants with prolonged lifetime of the blue-shifted M intermediate would be advantageous, but the optoelectric properties of such mutants are still elusive. Using expression in Xenopus oocytes and two-electrode voltage-clamping, we analyzed photocurrents of BR mutants with kinetically destabilized (F171C, F219L) or stabilized (D96N, D96G) M intermediate in response to green light (to probe H+ pumping) and blue laser flashes (to probe accumulation/decay of M). These mutants have divergent M lifetimes. As for BR-WT, this strictly correlates with the voltage dependence of H+ pumping. BR-F171C and BR-F219L showed photocurrents similar to BR-WT. Yet, BR-F171C showed a weaker voltage dependence of proton pumping. For both mutants, blue laser flashes applied during and after green-light illumination showed reduced M accumulation and shorter M lifetime. In contrast, BR-D96G and BR-D96N exhibited small photocurrents, with nonlinear current-voltage curves, which increased strongly in the presence of azide. Blue laser flashes showed heavy M accumulation and prolonged M lifetime, which accounts for the strongly reduced H+ pumping rate. Hyperpolarizing potentials augmented these effects. The combination of M-stabilizing and -destabilizing mutations in BR-D96G/F171C/F219L (BR-tri) shows that disruption of the primary proton donor Asp-96 is fatal for BR as a proton pump. Mechanistically, M destabilizing mutations cannot compensate for the disruption of Asp-96. Accordingly, BR-tri and BR-D96G photocurrents were similar. However, BR-tri showed negative blue laser flash-induced currents even without actinic green light, indicating that Schiff base deprotonation in BR-tri exists in the dark, in line with previous spectroscopic investigations. Thus, M-stabilizing mutations, including the triple mutation, drastically interfere with electrochemical H+ gradient generation.