Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Critical Role of Asp227 in the Photocycle of Proteorhodopsin

MPG-Autoren
/persons/resource/persons137591

Bamann,  Christian
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Herz, J., Verhoefen, M.-K., Weber, I., Bamann, C., Glaubitz, C., & Wachtveitl, J. (2012). Critical Role of Asp227 in the Photocycle of Proteorhodopsin. Biochemistry, 51(28), 5589-5560.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-D55E-7
Zusammenfassung
The photocycle of the proton acceptor complex mutant D227N of the bacterial retinal protein proteorhodopsin is investigated employing steady state pH-titration experiments in the UV−visible range as well as femtosecond-pump−probe spectroscopy and flash photolysis in the visible spectral range. The evaluation of the pH-dependent spectra showed that the neutralization of the charge at position 227 has a remarkable influence on the ground state properties of the protein. Both the pKa values of the primary proton acceptor and of the Schiff base are considerably decreased. Femtosecond-time-resolved measurements demonstrate that the general S1 deactivation pathway; that is, the K-state formation is preserved in the D227N mutant. However, the pH-dependence of the reaction rate is lost by the substitution of Asp227 with an asparagine. Also no significant kinetic differences are observed upon deuteration. This is explained by the lack of a strongly hydrogen-bonded water in the vicinity of Asp97, Asp227, and the Schiff base or a change in the hydrogen bonding of it (Ikeda et al. (2007) Biochemistry 46, 5365−5373). The flash photolysis measurements prove a considerably elongated photocycle with pronounced pHdependence. Interestingly, at pH 9 the M-state is visible until the end of the reaction cycle, leading to the conclusion that the mutation does not only lower the pKa of the Schiff base in the unphotolyzed ground state but also prevents an efficient reprotonation reaction