English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP

MPS-Authors
/persons/resource/persons137833

Perez,  Camilo
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137752

Koshy,  Caroline
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137955

Yildiz,  Özkan
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137962

Ziegler,  Christine
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Perez, C., Koshy, C., Yildiz, Ö., & Ziegler, C. (2012). Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP. Nature, 490, 126-130. doi:10.1038/nature11403.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-D5A7-0
Abstract
Betaine and Na(+) symport has been extensively studied in the osmotically regulated transporter BetP from Corynebacterium glutamicum, a member of the betaine/choline/carnitine transporter family, which shares the conserved LeuT-like fold of two inverted structural repeats. BetP adjusts its transport activity by sensing the cytoplasmic K(+) concentration as a measure for hyperosmotic stress via the osmosensing carboxy-terminal domain. BetP needs to be in a trimeric state for communication between individual protomers through several intratrimeric interaction sites. Recently, crystal structures of inward-facing BetP trimers have contributed to our understanding of activity regulation on a molecular level. Here we report new crystal structures, which reveal two conformationally asymmetric BetP trimers, capturing among them three distinct transport states. We observe a total of four new conformations at once: an outward-open apo and an outward-occluded apo state, and two closed transition states--one in complex with betaine and one substrate-free. On the basis of these new structures, we identified local and global conformational changes in BetP that underlie the molecular transport mechanism, which partially resemble structural changes observed in other sodium-coupled LeuT-like fold transporters, but show differences we attribute to the osmolytic nature of betaine, the exclusive substrate specificity and the regulatory properties of BetP.