English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The structural basis of secondary active transport mechanisms

MPS-Authors
/persons/resource/persons137656

Forrest,  Lucy R.
Max Planck Research Group of Computational Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137962

Ziegler,  Christine
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Forrest, L. R., Krämer, R., & Ziegler, C. (2011). The structural basis of secondary active transport mechanisms. Biochimica et Biophysica Acta - Bioenergetics, 1807(2), 167-188.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0024-D613-5
Abstract
Secondary active transporters couple the free energy of the electrochemical potential of one solute to the transmembrane movement of another. As a basic mechanistic explanation for their transport function the model of alternating access was put forward more than 40 years ago, and has been supported by numerous kinetic, biochemical and biophysical studies. According to this model, the transporter exposes its substrate binding site(s) to one side of the membrane or the other during transport catalysis, requiring a substantial conformational change of the carrier protein. In the light of recent structural data for a number of secondary transport proteins, we analyze the model of alternating access in more detail, and correlate it with specific structural and chemical properties of the transporters, such as their assignment to different functional states in the catalytic cycle of the respective transporter, the definition of substrate binding sites, the type of movement of the central part of the carrier harboring the substrate binding site, as well as the impact of symmetry on fold-specific conformational changes. Besides mediating the transmembrane movement of solutes, the mechanism of secondary carriers inherently involves a mechanistic coupling of substrate flux to the electrochemical potential of co-substrate ions or solutes. Mainly because of limitations in resolution of available transporter structures, this important aspect of secondary transport cannot yet be substantiated by structural data to the same extent as the conformational change aspect. We summarize the concepts of coupling in secondary transport and discuss them in the context of the available evidence for ion binding to specific sites and the impact of the ions on the conformational state of the carrier protein, which together lead to mechanistic models for coupling.