English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes

MPS-Authors
/persons/resource/persons137853

Rhinow,  Daniel
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137764

Kühlbrandt,  Werner       
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rhinow, D., Büenfeld, M., Weber, N.-E., Beyer, A., Gölzhäuser, A., Kühlbrandt, W., et al. (2011). Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes. Ultramicroscopy, 111(5), 342-349. doi:10.1016/j.ultramic.2011.01.028.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-D623-1
Abstract
Ultrathin carbon nanomembranes (CNM) comprising crosslinked biphenyl precursors have been tested as support films for energy-filtered transmission electron microscopy (EFTEM) of biological specimens. Due to their high transparency CNM are ideal substrates for electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) of stained and unstained biological samples. Virtually background-free elemental maps of tobacco mosaic virus (TMV) and ferritin have been obtained from samples supported by ∼1 nm thin CNM. Furthermore, we have tested conductive carbon nanomembranes (cCNM) comprising nanocrystalline graphene, obtained by thermal treatment of CNM, as supports for cryoEM of ice-embedded biological samples. We imaged ice-embedded TMV on cCNM and compared the results with images of ice-embedded TMV on conventional carbon film (CC), thus analyzing the gain in contrast for TMV on cCNM in a quantitative manner. In addition we have developed a method for the preparation of vitrified specimens, suspended over the holes of a conventional holey carbon film, while backed by ultrathin cCNM.