English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The c13 Ring from a Thermoalkaliphilic ATP Synthase Reveals an Extended Diameter Due to a Special Structural Region

MPS-Authors
/persons/resource/persons137797

Matthies,  Doreen
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137841

Preiss,  Laura
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137933

Vonck,  Janet       
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137798

Meier,  Thomas
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;
Cluster of Excellence Macromolecular Complexes, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Matthies, D., Preiss, L., Klyszejko, A. L., Muller, D. J., Cook, G. M., Vonck, J., et al. (2009). The c13 Ring from a Thermoalkaliphilic ATP Synthase Reveals an Extended Diameter Due to a Special Structural Region. Journal of Molecular Biology, 388(3), 611-618. doi:10.1016/j.jmb.2009.03.052.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-D78D-B
Abstract
We have structurally characterized the c-ring from the thermoalkaliphilic Bacillus sp. strain TA2.A1 F1Fo-ATP synthase. Atomic force microscopy imaging and cryo-electron microscopy analyses confirm previous mass spectrometric data indicating that this c-ring contains 13 c-subunits. The cryo-electron microscopy map obtained from two-dimensional crystals shows less closely packed helices in the inner ring compared to those of Na+-binding c11 rings. The inner ring of α-helices in c11 rings harbors a conserved GxGxGxGxG motif, with glycines located at the interface between c-subunits, which is responsible for the close packing of these helices. This glycine motif is altered in the c13 ring of Bacillus sp. strain TA2.A1 to AxGxSxGxS, leading to a change in c–c subunit contacts and thereby enlarging the c-ring diameter to host a greater number of c-subunits. An altered glycine motif is a typical feature of c-subunit sequences in alkaliphilic Bacillus species. We propose that enlarged c-rings in proton-dependent F-ATP synthases may represent an adaptation to facilitate ATP synthesis at low overall proton-motive force, as occurs in bacteria that grow at alkaline pH.