Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The correlation of cathodic peak potentials of vitamin K3 derivatives and their calculated electron affinities. The role of hydrogen bonding and conformational changes

MPG-Autoren
/persons/resource/persons137785

Madej,  M. Gregor
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137768

Lancaster,  C. Roy D.
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nasiri, H. R., Panisch, R., Madej, M. G., Bats, J. W., Lancaster, C. R. D., & Schwalbe, H. (2009). The correlation of cathodic peak potentials of vitamin K3 derivatives and their calculated electron affinities. The role of hydrogen bonding and conformational changes. Structures and Mechanisms in Molecular Bioenergetics, 601-608.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-D7D7-3
Zusammenfassung
2-methyl-1,4-naphtoquinone 1 (vitamin K3, menadione) derivatives with different substituents at the 3- position were synthesized to tune their electrochemical properties. The thermodynamic midpoint potential (E1/2) of the naphthoquinone derivatives yielding a semi radical naphthoquinone anion were measured by cyclic voltammetry in the aprotic solvent dimethoxyethane (DME). Using quantum chemical methods, a clear correlation was found between the thermodynamic midpoint potentials and the calculated electron affinities (EA). Comparison of calculated and experimental values allowed delineation of additional factors such as the conformational dependence of quinone substituents and hydrogen bonding which can influence the electron affinities (EA) of the quinone. This information can be used as a model to gain insight into enzyme–cofactor interactions, particularly for enzyme quinone binding modes and the electrochemical adjustment of the quinone motif