English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

1.55 Å Structure of the Ectoine Binding Protein TeaA of the Osmoregulated TRAP-Transporter TeaABC from Halomonas elongata

MPS-Authors
/persons/resource/persons137765

Kuhlmann,  Sonja I.
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137917

Terwisscha van Scheltinga,  Anke C.
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137962

Ziegler,  Christine
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kuhlmann, S. I., Terwisscha van Scheltinga, A. C., Bienert, R., Kunte, H.-J., & Ziegler, C. (2008). 1.55 Å Structure of the Ectoine Binding Protein TeaA of the Osmoregulated TRAP-Transporter TeaABC from Halomonas elongata. Biochemistry, 47(36), 9475-9485. doi:10.1021/bi8006719.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-D825-D
Abstract
TeaABC from the moderate halophilic bacterium Halomonas elongata belongs to the tripartite ATP-independent periplasmic transporters (TRAP-T), a family of secondary transporters functioning in conjunction with periplasmic substrate binding proteins. TeaABC facilitates the uptake of the compatible solutes ectoine and hydroxyectoine that are accumulated in the cytoplasm under hyperosmotic stress to protect the cell from dehydration. TeaABC is the only known TRAP-T activated by osmotic stress. Currently, our knowledge on the osmoregulated compatible solute transporter is limited to ABC transporters or conventional secondary transporters. Therefore, this study presents the first detailed analysis of the molecular mechanisms underlying substrate recognition of the substrate binding protein of an osmoregulated TRAP-T. In the present study we were able to demonstrate by isothermal titration calorimetry measurements that TeaA is a high-affinity ectoine binding protein ( K d = 0.19 microM) that also has a significant but somewhat lower affinity to hydroxyectoine ( K d = 3.8 microM). Furthermore, we present the structure of TeaA in complex with ectoine at a resolution of 1.55 A and hydroxyectoine at a resolution of 1.80 A. Analysis of the TeaA binding pocket and comparison of its structure to other compatible solute binding proteins from ABC transporters reveal common principles in compatible solute binding but also significant differences like the solvent-mediated specific binding of ectoine to TeaA.